设f(x)=根号下(x—3)+根号下(6—x),若不等式f(x)

问题描述:

设f(x)=根号下(x—3)+根号下(6—x),若不等式f(x)

不用柯西不等式
y=f(x)=√(x-3)+√(6-x)
y²=x-3+6-x+2√[(x-3)(6-x)
=3+2√(-x²+9x-18)
定义域x-3>=0,6-x>=0
3-x²+9x-18
=-(x-9/2)²+9/4
3所以最小=0,最大=9/4
所以y²最小=3+2√2=3,最大=3+2√(9/4)=6
y是两个根号相加,所以大于等于0
所以√3则只要m大于√3就有解了
所以m>√3

这个问题不用柯西不等式
先求定义域,
再算最值就行了!

柯西不等式:∑(i=1,n)|ai×∑(i=1,n)|bi≥∑(i=1,n)|(aibi),即:
(a1²+a2²+a3²+···+an²)(b1²+b2²+b3²+···+bn²)≥(a1b1+a2b2+a3b3+···+anbn)²
此题不能直接或主要运用柯柯西不等式!
f(x)=√(x-3)+√(6-x)
先确定f(x)的定义域:
x-3≥0,6-x≥;解得3≤x≤6.
f(x)=√(x-3)+√(6-x)
=√(√(x-3)+√(6-x))²
=√(√(x-3)²+√(6-x)²+2√((x-3)(6-x)))
=√((x-3+6-x)+2√(-x²+9x-18))
=√(3+2√((9/4)-(x-(9/2))²))
∵3≤x≤6
∴0≤√((9/4)-(x-(9/2))²)≤√(9/4)=3/2
∴√3≤√(3+2√((9/4)-(x-(9/2))²))≤√(3+2×(3/2))=√6
∴√3≤f(x)≤√6
当x=3或6时,f(x)min=√3;当x=9/2时,f(x)max=√6.
∴要f(x)√3即可!

f(x)的定义域是【3,6】,值域是【√3,√6】,
若不等式f(x)则实数m的取值范围是(√3,+∞).