已知如图,△ABC是等边三角形,P是三角形外的一点,且∠ABP+∠ACP=180°. 求证:AP平分∠BPC.
问题描述:
已知如图,△ABC是等边三角形,P是三角形外的一点,且∠ABP+∠ACP=180°.
求证:AP平分∠BPC.
答
证明:过点A作AM⊥BP,AN⊥PN,交PC的延长线于点N,
可得出∠AMB=∠ANC=90°,
∵∠ACN+∠ACP=180°,且∠ABM+∠ACP=180°,
∴∠ACN=∠ABM,
又△ABC是等边三角形,
∴AB=AC,
在△ABM和△ACN中,
,
∠AMB=∠ANC ∠ABM=∠ACN AB=AC
∴△ABM≌△ACN(AAS),
∴AM=AN,又AM⊥BP,AN⊥PN,
∴PA平分∠BPC.