已知等比数列前n项和为Sn,a1a2a3...a*n=Pn,1/a1+1/a2+1/a3+...+1/an.求证:(Pn)^2=(Sn/Tn)^n
问题描述:
已知等比数列前n项和为Sn,a1a2a3...a*n=Pn,1/a1+1/a2+1/a3+...+1/an.求证:(Pn)^2=(Sn/Tn)^n
答
1/a1+1/a2+1/a3+...+1/an是什么?Tn?
Pn=a1*a2*a3*…an=a1^n*q^(n(n-1)/2)
(Pn)^2=a1^(2n)*q^(n(n-1))
Tn=(1/a1)*(1-(1/q)^n)/(1-1/q)
Sn/Tn=a1^2*q^(n-1)
故(Pn)^2=(Sn/Tn)^n