函数f(x)在x=0附近有定义,且f(0)=0,f′(0)=1,则limx→0f(x)x= 1
问题描述:
函数f(x)在x=0附近有定义,且f(0)=0,f′(0)=1,则limx→0f(x)x= 1
答
易知,lim(x-->0){[f(x)-f(0)]/(X-0)}=f'(0)=1.===>lim(x-->0)[f(x)/x]=1.
函数f(x)在x=0附近有定义,且f(0)=0,f′(0)=1,则limx→0f(x)x= 1
易知,lim(x-->0){[f(x)-f(0)]/(X-0)}=f'(0)=1.===>lim(x-->0)[f(x)/x]=1.