已知F1,F2是椭圆上的两个焦点,P是椭圆上任意一点设三角形PF1F2是外接圆和内切圆半径分别是R,r

问题描述:

已知F1,F2是椭圆上的两个焦点,P是椭圆上任意一点设三角形PF1F2是外接圆和内切圆半径分别是R,r
若PF1-PF2=8rR,求椭圆离心率
好的一定采纳= =

e=1/3首先澄清一点,原题条件有误,既然P是椭圆上任意点,就不可能PF1-PF2=8rR.所以应为PF1*PF2=8rR,是两边之积而不是差,差根本求不出来.不知是提问者抄错了还是打错了.焦点三角形面积=1/2*r(PF1+PF2+F1F2)=1/2*r(2a+...