一道高一三角函数题!锐角三角形ABC三边为a,b,c.sin2A=sin(60+B)sin(60-B)+sin2B.求A 若向量ABxAC=12a=2√7,求b,c,(b扫码下载作业帮拍照答疑一拍即得

问题描述:

一道高一三角函数题!锐角三角形ABC三边为a,b,c.sin2A=sin(60+B)sin(60-B)+sin2B.求A 若向量ABxAC=12a=2√7,求b,c,(b

扫码下载作业帮
拍照答疑一拍即得

SIN(A+B)SIN(A-B)=SIN^2A-SIN^2B
SIN(60+B)SIN(60-B)=(SIN60)^2-(SINB)^2 sin^2A=sin(60+B)sin(60-B)+sin^2B===>sin^2A=(SIN60)^2-SINB^2+sin^2B=(SIN60)^2===>sinA=sin60===>A=60
12a=2√7===>a=√7/6 ==>a^2=7/36 =b^2+c^2-2bc cosA=b^2+c^2-bc.(1)
向量ABxAC=12a=2√7===>cbcosA=2√7===>bc=4√7(bb=