在带拉格朗日余项的泰勒公式中,前提条件是设f(x)在含x的区间(a,b)有n+1阶导数,在[a,b]有连续的n阶导数.怎么在[a,b]只有连续的n阶导数了?
问题描述:
在带拉格朗日余项的泰勒公式中,前提条件是设f(x)在含x的区间(a,b)有n+1阶导数,在[a,b]有连续的n阶导数.怎么在[a,b]只有连续的n阶导数了?
答
证明Taylar定理的时候,一般用的是中值定理,用f的n次Taylor多项式,这时候要展开到f的n次导数,然后把Taylor多项式作为一个函数,用下中值定理,因为这时最高次是n次导数,比较一下中值定理的条件,相当于f的n次导函数,在闭...