已知两个等比数列{an},{bn},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3. (1)若a=1,求数列{an}的通项公式; (2)若数列{an}唯一,求a的值.
问题描述:
已知两个等比数列{an},{bn},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3.
(1)若a=1,求数列{an}的通项公式;
(2)若数列{an}唯一,求a的值.
答
(1)设等比数列{an}的公比为q,
又∵b1-a1=1,b2-a2=2,b3-a3=3.且{bn}为等比数列
∴(2+q)2=2(3+q2)
∴q=2±
2
∴an=(2+
)n−1或an=(2−
2
)n−1
2
(2)由(1)知(2+aq)2=(1+a)(3+aq2)
整理得:aq2-4aq+3a-1=0
∵a>0,∴△=4a2+4a>0
∵数列{an}唯一,∴方程必有一根为0,得a=
1 3