2^n.sinπ/2^n (n趋近无穷),求极限,用两个重要极限公式求
问题描述:
2^n.sinπ/2^n (n趋近无穷),求极限,用两个重要极限公式求
答
=lim[sin(π/2^n)/(π/2^n)]·n
=1·n
=n=lim[sin(π/2^n)/(π/2^n)]·n
=1·π
=π
按错了符号=lim[sin(π/2^n)/(π/2^n)]·π
=1·π
=π