2^n.sinπ/2^n (n趋近无穷),求极限,用两个重要极限公式求

问题描述:

2^n.sinπ/2^n (n趋近无穷),求极限,用两个重要极限公式求

=lim[sin(π/2^n)/(π/2^n)]·n
=1·n
=n=lim[sin(π/2^n)/(π/2^n)]·n
=1·π

按错了符号=lim[sin(π/2^n)/(π/2^n)]·π
=1·π