设函数f(x)具有一阶连续导数 且f(0)=0 若曲线积分∫[f(x)-e^x]sinydx-f(x)cosydy与路径无关 则f(x)的表达式为多少?
问题描述:
设函数f(x)具有一阶连续导数 且f(0)=0 若曲线积分∫[f(x)-e^x]sinydx-f(x)cosydy与路径无关 则f(x)的表达式为多少?
杜绝复制粘贴
网上已经查过了 齐次微分知识我还没有学!
请用曲线积分这章的知识帮我解答
答
这个必须用到解微分方程的1.因为积分与路径无关,所以令 P对y的偏导数等于Q对x的偏导数,得到一个关于f(x)的一解微分方程2.解这个方程,得到f(x)的表达式.3.因为与路径无关,所以取任意取一条曲线,一般取从(0,0)到...