已知sinαcosβ=cos^βsinx/2cosx+sin^2αcosx/2sinx,求证:tgx=sinα/cosβ

问题描述:

已知sinαcosβ=cos^βsinx/2cosx+sin^2αcosx/2sinx,求证:tgx=sinα/cosβ

证:
设sinα = y * cosβ,代入条件式:
y * cos^2β = cos^2β * sinx/2cosx + y^2 * cos^2β * cosx/2sinx
两边同时除以cos^2β得到:
y = sinx/2cosx + y^2 * cosx/2sinx
整理,得
cosx/2sinx * y^2 - y + sinx/2cosx = 0
解这个一元二次方程
就可以得证