已知函数f(x)=2√3sinxcosx+2cosx^2-1(x属于R)
问题描述:
已知函数f(x)=2√3sinxcosx+2cosx^2-1(x属于R)
(1)求函数f(x)的最小正周期及在区间[0,2/π]上的最大值和最小值
(2)f(x0)=6/5,x0属于[4/π,2/π],求cos2x0的值
答
f(x)=2cosx(sinx-cosx)+1
=2sinxcosx-2(cosx)^2+1
=2sinxcosx-[2(cosx)^2-1]
=sin2x-cos2x
=√2(√2/2*sin2x-√2/2*cos2x)
=√2(sin2xcosπ/4-cos2xsinπ/4)
=√2sin(2x-π/4)
(1)
f(x)=√2sin(2x-π/4)
∴函数f(x)的最小正周期:
T=2π/2=π
(2)2sin(2x0+30°)=6/5
则sin(2x0+30°)=3/5
cos(2x0+30°)=-4/5
所以cos2x0=(3-4√3)/10
不懂的欢迎追问,