矩阵A与B合同,B为正定矩阵,那么A是正定矩阵吗?
问题描述:
矩阵A与B合同,B为正定矩阵,那么A是正定矩阵吗?
矩阵A与B合同,B为正定矩阵,那么A正定矩阵吗?(请予以证明)
要先证明A为可逆阵
答
答案是肯定的.而且我认为问题没有那么复杂.B是正定矩阵,则存在可逆矩阵T,使得B=TT’.(右上角一撇代表转置,下同)A与B合同,则存在可逆矩阵P,使得A=PBP’.令Z=PT.显然Z为可逆矩阵,且A=ZZ’.所以A为正定矩阵.显然A...