求∫(x^3-1)/(x^2+1)dx

问题描述:

求∫(x^3-1)/(x^2+1)dx

因为 (x³ - 1) = (x³ + x ) - ( x + 1)=x(x² + 1 ) - ( x + 1)
I=∫(x^3-1)/(x^2+1)dx
=∫xdx - ∫(x + 1)/(x² + 1)dx
=∫xdx - ∫x /(x² + 1)dx - ∫1 /(x² + 1)dx
=x²/2 - 1/2 * ln|(x² + 1)| - arctanx + C