设y=y(x) 由方程x^3+y^3=e^xy 确定,求 dy/dx!x=0的值
问题描述:
设y=y(x) 由方程x^3+y^3=e^xy 确定,求 dy/dx!x=0的值
如题,过程
答
x^3+y^3=e^xy 对x求导3x²+3y²*y'=e^(xy)*(xy)'3x²+3y²*y'=e^(xy)*(y+x*y')3x²+3y²*y'=e^(xy)*y+e^(xy)*x*y'y'=[3x²-e^(xy)*y]/[e^(xy)*x-3y²]即dy/dx=[3x²-e^(xy)*y]/...