立体几何!证明两个面互相垂直!
问题描述:
立体几何!证明两个面互相垂直!
已知正三棱柱ABC-A1B1C1,E为CC1上的点,AC=a,D为BB1上的点,且满足EC=2BD=a,求证:面ADE⊥面ACC1A1
答
方法很多...由于不能画图,只能提供简单的解题思路.
取AC的中点为M,AE的中点为N.连接BM、MN、DN.很容易证明BM平行于DN...(BD=MN=1/2a)
由于BM垂直于面ACC1A1,所以DN垂直于面ACC1A1
又由于DN在面ADE上,所以两个面垂直