若n为正整数,观察下列各式: ①1/1×3=1/2(1−1/3);②1/3×5=1/2(1/3−1/5);③1/5×7=1/2(1/5−1/7)… 根据观察计算并填空: (1)1/1×3+1/3×5+1/5×7=_ (2)1/1×3+1/3
问题描述:
若n为正整数,观察下列各式:
①
=1 1×3
(1−1 2
);②1 3
=1 3×5
(1 2
−1 3
);③1 5
=1 5×7
(1 2
−1 5
)…1 7
根据观察计算并填空:
(1)
+1 1×3
+1 3×5
=______1 5×7
(2)
+1 1×3
+1 3×5
+…+1 5×7
=______. 1 (2n−1)(2n+1)
答
(1)
+1 1×3
+1 3×5
=1 5×7
(1-1 2
+1 3
-1 3
+1 5
-1 5
)=1 7
×1 2
=6 7
;3 7
(2)原式=
(1-1 2
+1 3
-1 3
+…+1 5
-1 2n−1
)=1 2n+1
×1 2
=2n+1−1 2n+1
.n 2n+1
故答案是
;3 7
.n 2n+1