已知sinα^4+cos^4=1 则sinα+cosα的值为多少?
问题描述:
已知sinα^4+cos^4=1 则sinα+cosα的值为多少?
答
sinα^4+cos^4=(sinα^2+cosα^2)^2-2sinα^2cosα^2=1-2(sinαcosα)^2=1
(sinα+cosα)^2=1+2sinαcosα=1
sinα+cosα=正负1
答
∵sin^4α+cos^4α
=(sin^2a+cos^2a)^2-2sin^2acos^2a
=1-2sin^2acos^2a=1,
∴sinacosa=0,
又∵(sinα+cosα)^2=sin^2a+cos^2a+2sinacosa=1,
∴sinα+cosα=±1.