arctan(1/3)+arctan3+arcsin(1/5)-arccos(-1/5)=

问题描述:

arctan(1/3)+arctan3+arcsin(1/5)-arccos(-1/5)=

α=arctan(1/3)
β=arctan3
tanα=1/3
tanβ=3
tan(π/2-β)=(sin(π/2-β))/cos(π/2-β)=cosβ/sinβ=1/tanβ=1/3=tanα
因为
(π/2-β) ;α∈(0,π)
所以π/2-β=α
==>arctan(1/3)+arctan3=π/2
θ=arcsin(1/5)==>sinθ=1/5
φ=arccos(-1/5)=π-arccos(1/5)
π-φ=arccos(1/5)
cos(π-φ)=1/5=sinθ=cos(π/2-θ)
因为
π-φ,π/2-θ,∈(0,π/2)
所以
π-φ=π/2-θ
θ-φ=﹣π/2
arctan(1/3)+arctan3+arcsin(1/5)-arccos(-1/5)=π/2-π/2=0

用两个公式就行了.(1)arcsinx+arccosx=π/2,arctanx+arccotx=π/2(2) arccos(-x)=π-arccosx从而 arctan(1/3)+arctan3+arcsin(1/5)-arccos(-1/5)=arccot3+arctan3+arcsin(1/5)+arccos(1/5) -π=π/2 +π/2 -π=0...