【数学函数问题】已知:f(x)=sin[π/3(x+1)]-根号3cos[π/3(x+1)],则f(1)+f(2)+f(3)+……+f(2009)等于?

问题描述:

【数学函数问题】已知:f(x)=sin[π/3(x+1)]-根号3cos[π/3(x+1)],则f(1)+f(2)+f(3)+……+f(2009)等于?

mnbmjhmjhhmjh

这不周期函数么么么.......
详细一点,(x+1)在分母还是分子上

答案:
f(x)=2(sin[π/3(x+1)]/2-√3/2cos[π/3(x+1)])=2(sin[π/3(x+1)]cosπ/3-sinπ/3cos[π/3(x+1)])
=2sin(π/3x)
f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0
f(1)+f(2)+f(3)+f(4)+f(5)......+f(2009)=f(1)+f(2)+f(3)+f(4)+f(5)=0

我现在用手机,呆会上网帮你

f(x)=2(sin[π/3(x+1)]/2-√3/2cos[π/3(x+1)])=2(sin[π/3(x+1)]cosπ/3-sinπ/3cos[π/3(x+1)])=2sin(π/3x)f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0f(1)+f(2)+f(3)+f(4)+f(5).+f(2009)=f(1)+f(2)+f(3)+f(4)+f(5)=0