若tan(5π+α)=m,求sin(-α)-cos(π-α)/sin(α-5π)+cos(π+α)的值

问题描述:

若tan(5π+α)=m,求sin(-α)-cos(π-α)/sin(α-5π)+cos(π+α)的值

tan(5π+α)=m
tanα=m
sin(-α)-cos(π-α)/sin(α-5π)+cos(π+α)
=(-sina+cosa)/(-sina-cosa)
=-(-tana+1)/(tana+1)
=-(1-m)/(1+m)
=(m-1)/(m+1)

用a代替
tan(5π+a)=tana=m
原式=(-sina+cosa)/(-sina-cosa)
上下除以cosa,且sina/cosa=tana
所以原式=(-tana+1)/(-tana-1)
=(m-1)/(m+1)