为什么函数f(x)=(x-1)(x+1)²(x-2)³的极值点有三个?
问题描述:
为什么函数f(x)=(x-1)(x+1)²(x-2)³的极值点有三个?
答
也就是求其导数的零点.
y'=(x+1)^2(x-2)^3+(x-1)*[2(x+1)(x-2)^3-(x+1)^2*3(x-2)^2]
=(x+1)^2(x-2)^3+2(x-1)(x+1)(x-2)^3-3(x-1)(x+1)^2(x-2)^2
=(x+1)^2(x-2)^3+(x+1)(x-2)^2[2(x-1)(x-2)-3(x-1)(x+1)]
=(x+1)^2(x-2)^3+(x+1)(x-2)^2(-x^2-6x+13)
=(x+1)(x-2)^2(x+1-x^2-6x+13)
=(x+1)(x-2)^2(-x^2-5x+14).
=-(x+1)(x-2)^2(x-2)(x+7).
=-(x+1)(x-2)^3(x+7).
令y'=0,可得到三个x的值,所以有三个极值点.这样算好复杂的说,选择题有没有更简单一点的办法呢、?谢谢咯要是选择题,比最高指数大那些选项都要去掉,至于具体的还得计算,计算过程中可能含有1个公因式,则数量又要减去1个。本题就是这样,后面含有公因式(x-2).