如图所示的梯形ABCD中,E是AD边上的中点,直线CE把梯形ABCD分成甲、乙两部分,它们的面积比是10:7,上底AB与下底CD的比是_.

问题描述:

如图所示的梯形ABCD中,E是AD边上的中点,直线CE把梯形ABCD分成甲、乙两部分,它们的面积比是10:7,上底AB与下底CD的比是______.

先连接AC,E是AD中点,

那么△ACE=△乙,
又已知S△甲:S△乙=10:7,可以把S△甲的面积看作10,S△乙的面积看作7,
又因为SABC=S甲-SACE
=10-7,
=3,
又因为AB∥CD,
所以△ABC与△ACD是等高不等底的,
高一定时,三角形的面积与底成正比的关系可得出:
AB:CD=△ABC的面积:△ACD的面积,
AB:CD=3:(7+7),
AB:CD=3:14,
答:梯形的上底AB与下底CD的长度比AB:CD=3:14.
故答案为:3:14.