证明函数F(X)=[根号(X²+1)]-X是减函数

问题描述:

证明函数F(X)=[根号(X²+1)]-X是减函数

xx>=0时,
F(x)=√(x^2+1)-x][√(x^2+1)+x]/[√(x^2+1)+x]
=(x^2+1-x^2)/[√(x^2+1)+x]
=1/[√(x^2+1)+x]
因x>=0,分母中√(x^2+1),x都是增函数,所以F(x)为减函数;
综上,F(x)在R上都是减函数.