y=(lnx)^x·x^(lnx)的导数
问题描述:
y=(lnx)^x·x^(lnx)的导数
答
y=(lnx)^x·x^(lnx),①
lny=xln(lnx)+(lnx)^2,
求导得y'/y=ln(lnx)+x/lnx·1/x+2lnx/x
=ln(lnx)+1/lnx+2lnx/x,②
①*②,得y'=(lnx)^x·x^(lnx)·[ln(lnx)+1/lnx+2lnx/x].