大学数学证明题

问题描述:

大学数学证明题
有个区间[x0,x1],f,g两个函数在这个区间上连续,并且f',g'在这个区间的开区间上存在.已知f(x0)

数学人气:694 ℃时间:2020-05-01 04:06:17
优质解答
令m(x)=g(x)-f(x)
则,m(x0)=g(x0)-f(x0)>=0
m(x)的导数=f(x)的导数-g(x)的导数=>0
所以,m(x)为增函数,大于等于m(x0),即m(x)>=0,
即g(x)>=f(x)
我来回答
类似推荐

令m(x)=g(x)-f(x)
则,m(x0)=g(x0)-f(x0)>=0
m(x)的导数=f(x)的导数-g(x)的导数=>0
所以,m(x)为增函数,大于等于m(x0),即m(x)>=0,
即g(x)>=f(x)