设{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(  ) A.1 B.2 C.4 D.6

问题描述:

设{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(  )
A. 1
B. 2
C. 4
D. 6

设{an}的前3项为a1,a2,a3,则由等差数列的性质可得a1+a3=2a2
∴a1+a2+a3=3a2=12,解得a2=4,
由题意可得

a1+a3=8
a1a3=12
,解得
a1=2
a3=6
a1=6
a3=2

∵{an}是递增等差数列,
∴a1=2,a3=6,
故选B.