设A,B是n阶实矩阵,A的特征值互逆,证明矩阵AB=BA的充要条件为A的特征值都是B的特征值
问题描述:
设A,B是n阶实矩阵,A的特征值互逆,证明矩阵AB=BA的充要条件为A的特征值都是B的特征值
答
只需证明:若λ是AB的特征值,则λ也是BA的特征值.分两种情况:
(1)λ≠0.由λ是AB的特征值,存在非零向量x使得ABx=λx.所以BA(Bx)=B(ABx)=B(λx)=λBx,且Bx≠0(否则λx=ABx=0,得λ=0,矛盾).这说明Bx是BA的对应于特征值λ的特征向量,特别地λ也是BA的特征值.
(2)λ=0.此时存在非零向量x使得ABx=λx=0,所以AB不满秩,知det(AB)=0.从而det(BA)=det(AB)=0,BA不满秩,所以存在非零向量x使得BAx=0=λx.这说明λ=0也是BA的特征值.
证毕.