已知函数f(x)=log2(x/(1-x))解不等式f(t)-f(2t-1/2)≤0

问题描述:

已知函数f(x)=log2(x/(1-x))解不等式f(t)-f(2t-1/2)≤0

f(t)-f(2t-1/2)=log2(1/1-t)-log2[1/ (2/3-2t)]=log2[(2/3-2t)/(1-t)]【对数函数相减等于真数部分相除】若使log2[(2/3-2t)/(1-t)]≤0 则真数部分≤1即(2/3-2t)/(1-t)≤1化简变成(-t+二分之一)/(1-t)≤0...