函数f(x)=x^3+ax^2+1,x∈R.(1)讨论函数 f(x)的单调区间(2)设函数f(x)在(-2/3,-1/3)是减 函数,求a的取值范

问题描述:

函数f(x)=x^3+ax^2+1,x∈R.(1)讨论函数 f(x)的单调区间(2)设函数f(x)在(-2/3,-1/3)是减 函数,求a的取值范

(1)f(x)=x^3+ax^2+1
得到f'(x)=3x^2+2ax=x(3x+2a)
当a=0时,f‘(x)>=0恒成立 故f(x)在R上单调递增
当a