如图,△ABC中,AD是BC边上的中线,F是AD上一点,有AF:FD=1:5,连接CF,并延长交AB于E,则AE:EB等于(  ) A.1:6 B.1:8 C.1:9 D.1:10

问题描述:

如图,△ABC中,AD是BC边上的中线,F是AD上一点,有AF:FD=1:5,连接CF,并延长交AB于E,则AE:EB等于(  )
A. 1:6
B. 1:8
C. 1:9
D. 1:10

如图:过点D作DG∥EC交AB于G,
∵AD是BC边上的中线,∴BD=CD,∴BG=GE.
∵DG∥EC,∴AE:EG=AF:FD=1:5.
∴AE:EB=1:10.
故选D.