已知:△ABC三边长为a,b,c满足:a2+b2+c2-6a-8b-10c+50=0,试判断△ABC的形状.
问题描述:
已知:△ABC三边长为a,b,c满足:a2+b2+c2-6a-8b-10c+50=0,试判断△ABC的形状.
答
∵a2+b2+c2-6a-8b-10c+50=0,
∴a2-6a+9+b2-8b+16+c2-10c+25=0,
即(a-3)2+(b-4)2+(c-5)2=0,
∴a=3,b=4,c=5,
∵32+42=52,
∴△ABC是直角三角形.