在三角形ABC中,已知ln(sinA+sinB)=lnsinA+lnsinB-ln(sinB-sinA),且cos(A-B)+cosC=1-cos2C
问题描述:
在三角形ABC中,已知ln(sinA+sinB)=lnsinA+lnsinB-ln(sinB-sinA),且cos(A-B)+cosC=1-cos2C
求三角形形状,
求(a+c)∕b的取值范围
答
1,1-cos2C = cos(A+B) + cosC =0cos2C = 1C =π/2直角三角形2,ln(sinA+sinB)=lnsinA+ln(sinB-sinA)+lnsinBsinA+sinB = sinAsinB(sinB-sinA) (a+b)/b = (sinA+sinB)/sinB = sinA(sinB-sinA)注意sinB-sinA>0所以(a+b)/...