(1/2)在直角三角形ABC中,∠BAC=90o,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F,OE⊥OB交BC边于点...
问题描述:
(1/2)在直角三角形ABC中,∠BAC=90o,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F,OE⊥OB交BC边于点...
(1/2)在直角三角形ABC中,∠BAC=90o,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F,OE⊥OB交BC边于点E 求:当O为
答
补充:当O为AC边中点,且AB=AC,求证:BF=2OF
延长FD到G,使DG=FD,连BG、GC、FC
∵BD=DC,FD=DG
∴BGCF是菱形,
∴BO‖CG BF=CG
∵O是AC的中点,FO‖CG,
∴FO是△AGC的中位线,即OF=1/2CG
∴ BF=CG=2OF