取长为(根号5)+1的定线段AB为边作正方形ABCD,取AB的中点P,连接PD在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图,求AM、DM的长

问题描述:

取长为(根号5)+1的定线段AB为边作正方形ABCD,取AB的中点P,连接PD在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图,求AM、DM的长

(1)在Rt△APD中,AP=1,AD=2,由勾股定理知PD=√(AD^2+AP^2)=√(4+1)=√5
∴AF=PF-AP=PD-AP=√5-1,
DM=AD-AM=3-√5
(2)由于AM/AD=(√5-1)/2 ,DM/AM=(√5-1)/2,
∴点M是AD的黄金分割点.
∵AM/AD=(√5-1)/2 ,
又DM/AM=(√5-1)/2
∴AM/AD=DM/AM
∴AM^2=AD*DM