将1/x(x+1),1/(x+1)(x+2),1/(x+2)(x+3)通分,单独备注最简公分母

问题描述:

将1/x(x+1),1/(x+1)(x+2),1/(x+2)(x+3)通分,单独备注最简公分母

最简公分母是:x(x+1)(x+2)(x+3)
所以1/x(x+1),1/(x+1)(x+2),1/(x+2)(x+3)通分得
(x+2)(x+3)/x(x+1)(x+2)(x+3)
x((x+3)/x(x+1)(x+2)(x+3)
x(x+1)/x(x+1)(x+2)(x+3)