(x-y+1)y‘=1求微分方程通解.
问题描述:
(x-y+1)y‘=1求微分方程通解.
答
(x-y+1)dy/dx=1得:dy/dx=1/(x-y+1)则:dx/dy=x-y+1,(1)将x看作函数,y看作自变量令z=x-y+1,则dz/dy=dx/dy-1因此(1)化为:dz/dy+1=z分离变量得:dz/(z-1)=dy两边积分得:ln(z-1)=y+lnC即:z-1=Ce^y将z=x-y+1代入...