求证:5的2次方*3的2n+1次方*2的n次方-3的n次方*6的n+2次方能被13整除

问题描述:

求证:5的2次方*3的2n+1次方*2的n次方-3的n次方*6的n+2次方能被13整除

5^2×3^(2n+1)×2^n-3^n×6^(n+2)证明:5^2×3^(2n+1)×2^n-3^n×6^(n+2)=5^2×3^(2n+1)×2^n-3^n×(2×3)^(n+2)=5^2×3^(2n+1)×2^n-3^n×2^(n+2)×3^(n+2)=5^2×3^(2n+1)×2^n-3^(2n+2)×2^(n+2)=5^2×3^(2n+1)×2...