设有n个有理数x1,x2…xn.满足|xi|<1(i=1,2…n),且|x1|+|x2|+…+|xn|=19+|x1+x2+…+xn|求n的最小值.

问题描述:

设有n个有理数x1,x2…xn.满足|xi|<1(i=1,2…n),且|x1|+|x2|+…+|xn|=19+|x1+x2+…+xn|求n的最小值.

若n≤19,∵|xi|<1(i=1,2,···,n)∴|x1|+|x2|+······+|xn|<n≤19≤19+|x1+x2+······+xn|,与题中|x1|+|x2|+······+|xn|=19+|x1+x2+······+xn|矛盾!考虑n=20,令x1=x2=······=x10=-19...