证明:两个连续奇数的平方差是8的倍数.
问题描述:
证明:两个连续奇数的平方差是8的倍数.
提示:可设两个连续奇数为2a+1,2a+3,(a为正整数)
答
设两个连续奇数为2a+1,2a+3,(a为正整数)
用平方差公式:(2a+1+2a+3)乘(2a+3-2a-1)=(4a+4)乘2=4乘(a+1)乘2
一定是2乘4=8的倍数
你的采纳是我回答的动力!