已知圆C1:x2+y2-2x-4y-13=0,C2:x2+y2-2ax-6y+a2+1=0,(a>0)相外切,且直线L:mx+y-7=0与C2相切.

问题描述:

已知圆C1:x2+y2-2x-4y-13=0,C2:x2+y2-2ax-6y+a2+1=0,(a>0)相外切,且直线L:mx+y-7=0与C2相切.
求(1)圆C2的标准方程 (2)求m的值

(1)C1 :x2+y2-2x-4y-13=0==>(x-1)²+(y-2)²=18C2:x2+y2-2ax-6y+a2+1=0 ==> (x-a)²+(y-3)²=8相外切==> |C1C2|=r1+r2√[(a-1)²+1]=3√2+2√2=5√2==>a²-2a-48=0 ==>a1=8,a2=-6∵a>0,∴a=...