lim〔1+(1/2)+(1/4)+…1/(2的n次方)〕*〔1+(1/3)+(1/9)+…1/(3的n次方)]

问题描述:

lim〔1+(1/2)+(1/4)+…1/(2的n次方)〕*〔1+(1/3)+(1/9)+…1/(3的n次方)]

lim A= 1*(1-1/2^n)/(1-1/2)=2
lim B= 1*(1-1/3^n)/(1-1/3)=3/2
lim A*B= limA*limB=3