如果ab=2,a+b=3,求:(1)(a-b)²;的值.(2)a²+b²的值
问题描述:
如果ab=2,a+b=3,求:(1)(a-b)²;的值.(2)a²+b²的值
100²-99²+98²-97²+......+2²-1²
=
【x+y-4】+(xy-3)²=0,求x²+y²
=
答
1.
(a-b)²
=(a+b)²-4ab
=3²-4×2
=9-8
=1
2.
a²+b²
=(a-b)²+2ab
=1+2×2
=1+4
=5100²-99²+98²-97²+......+2²-1²=【x+y-4】+(xy-3)²=0,求x²+y²=100²-99²+98²-97²+......+2²-1²=(100-99)(100+99)+(98-97)(98+97)+...+(2-1)(2+1)=100+99+98+97+...+2+1=(100+1)*100/2=5050【x+y-4】+(xy-3)²=0你那个黑乎乎的括号,应该是绝对值吧?|x+y-4|+(xy-3)²=0绝对值与平方数都是非负数两个非负数的和等于0,这两个数都等于0x+y-4=0xy-3=0x+y=4xy=3x²+y²=(x+y)²-2xy=4²-2×3=16-6=10