用导数解:已知曲线c1:y=x^2,c2 :y=-(x-2)^2,直线l与C1c2,相切,求直线方程

问题描述:

用导数解:已知曲线c1:y=x^2,c2 :y=-(x-2)^2,直线l与C1c2,相切,求直线方程

函数y=x²的导数为y′=2x函数y=-(x-2)²的导数为y′=-2x+4设直线L的方程为y=kx+b,与C1的切点坐标为(a,a²),与C2的切点坐标为(c,-(c-2)²)所以有2a=k-2c+4=ka²=ka+b-(c-2)²=kc+b有以上四...