1/(1×2)+1/(2×3)+1/(3×4).+1/(48×49)+1/(49×50)等于多少?

问题描述:

1/(1×2)+1/(2×3)+1/(3×4).+1/(48×49)+1/(49×50)等于多少?


1/(1×2)=(1/1)-(1/2);
1/(2×3)=(1/2)-(1/3);
1/(3×4)=(1/3)-(1/4);
从上可以看出,等式左边可以拆成二个分母组成的分式之差,分子都为1,分母分别为为n和n+1
1/[n(n+1)]=(1/n)-[1/(n+1)]
1-1/50=49/50