若x≠y 比较x4-x3y与xy3-y4的大小

问题描述:

若x≠y 比较x4-x3y与xy3-y4的大小

(x^4-x^3y)-(xy^3-y^4)=x^4-x^3y-xy^3+y^4=x^3*(x-y)-y^3(x-y)=(x-y)(x^3-y^3)=(x-y)(x-y)(x^2+xy+y^2)=(x-y)^2*(x^2+xy+y^2)因为(x-y)^2>=0,(x^2+xy+y^2)>=0,所以x^4-x^3y比xy^3-y^4大...