一道初二几何证明题(要有过程)

问题描述:

一道初二几何证明题(要有过程)
有一张边长为1的正方形纸片ABCD,将其对折后的折痕为EF,再将C点折至EF上点P的位置,这时折痕为BQ,
(1)求EP的长;
(2)求以PQ为边的正方形的面积.

因为BP=BC=1EB=1/2三角形EBP为直角三角形所以EP^2+EB^2=BP^2EP=根号3/2因为三角形EPB于三角形FQP为相似三角形所以EB:FP=BP:PQPQ=BP*FP/EB=[1*(1-根号3/2)]/(1/2)=2-根号3所以以PQ为边的 正方形面积为(2-根号3)^2=...