求函数y=sinx+cosx+sinx*cosx的最大值和最小值

问题描述:

求函数y=sinx+cosx+sinx*cosx的最大值和最小值

y=sinx+cosx+sinx*cosx设sinx+cosx=t=√2 sin(x+45) 那么t∈(-√2 ,√2),(sinx+cosx)^2=1+2sinxcosx=t^2 则sinx*cosx=(t^2-1)/2带入y=t+0.5(t^2-1)+1 -1=0.5(t+1)^2-1所以当t=-1有最小值-1,t=√2有最大值1/2+√...