设f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=0.证明:至少存在一点§?(0,1),使得f'(§)=-2f (§)/...
问题描述:
设f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=0.证明:至少存在一点§?(0,1),使得f'(§)=-2f (§)/...
设f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=0.证明:至少存在一点§?(0,1),使得f'(§)=-2f (§)/§
大师们,救救我!
答
构造g(x)=f(x)*x^2 则:g(0)=g(1)=0
由Rolle定理
所以存在0