1/x-1/y=2 求(2x+3xy-2y)/(x-xy-y)的值1/x-1/y=2 求(2x+3xy-2y)/(x-xy-y)的值要准确 好的我会加分
问题描述:
1/x-1/y=2 求(2x+3xy-2y)/(x-xy-y)的值
1/x-1/y=2 求(2x+3xy-2y)/(x-xy-y)的值
要准确
好的我会加分
答
分式上下同时除以xy 则变成 (2/y+3-2/x)/(1/y-1-1/x)=(3-2)/(-1-1)=-1/2
答
由1/x-1/y=2得,y-x=2xy,即x-y=-2xy,2(x-y)=-4xy.
(2x+3xy-2y)/(x-xy-y)
=【2(x-y)+3xy】/【(x-y)-xy】
=(-4xy+3xy)/(-2xy-xy)
=-xy/(-3xy)
=1/3.
答
化简1/x-1/y=2可得2xy=y-x
所以x-y=-2xy
将(2x+3xy-2y)/(x-xy-y)变形为2(x-y)+3xy/x-y-xy
把x-y=-2xy代入可得-4xy+3xy/-2xy-xy=1/3
原式=1/3
答
答案负3分之1
由一可得 X - Y = -2XY
代人二可得答案
答
1/x-1/y=2
等式两边同时乘以xy
y-x=2xy
x-y=-2xy
=[2(x-y)+3xy]/[(x-y)-xy]
=(-4xy+3xy)/(-2xy-xy)
=(-xy)/(-3xy)
=1/3